

Universal controller for burners KS40-1 burner

KS40-1 burner

KS40-1 burner

KS40-1 burne

expert line

Operating manual English 9499-040-66011

Valid from:8473

Description of symbols in the text:

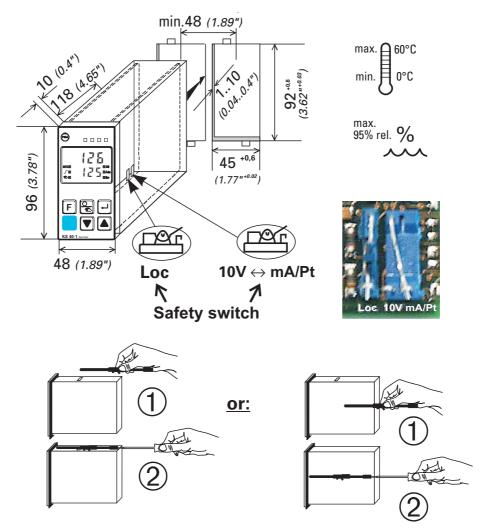
on the device:

? General information

• Follow the operating instructions

⚠ General warning

Attention: ESD-sensitive devices


© PMA Prozeß- und Maschinen-Automation GmbH • Printed in Germany (0207) All rights reserved. No part of this document may be reproduced or published in any form or by any means without prior written permission from the copyright owner.

> A publication of PMA Prozeß- und Maschinen Automation P.O.Box 310229 D-34058 Kassel Germany

Contents

1	Mounting
2	Electrical connections
3	Operation
3.1	Front view
3.2	Operating level
3.3	Self-tuning
3.4	Manual tuning
3.5	Operating structure
4	Configuration level
4.1	Configuration with WIII
4.2	Configuration without $\P U \cap \Gamma = \Pi \cap \Gamma \cap \Gamma$
4.3	Configuration survey:
5	Parameter setting level
5.1	Input scaling (only visible with $\P U I I = I I F F$)
6	Calibration level
7	Programmer
8	Technical data
9	Safety hints
9.1	Resetting to factory setting

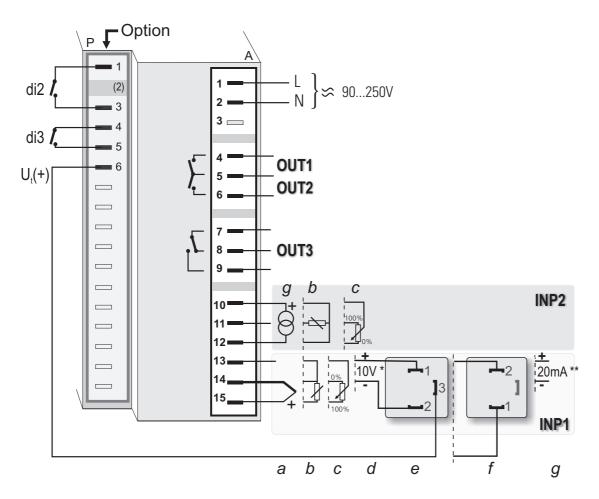
1 Mounting

Safety switch:

For access to the safety switches, the controller must be withdrawn from the housing. Squeeze the top and bottom of the front bezel between thumb and forefinger and pull the controller firmly from the housing.

$10V \leftrightarrow mA/Pt$	mA/Pt •	Thermocouple / Pt100 or transducer at 1 o P. 1
	10V	Pressure transmitter (010V) at InP. I
Loc	open	Access to the levels is as adjusted by means of BlueControl (engineering tool)
	closed 1	all levels accessible wihout restriction

- Factory setting
- Default setting: display of all levels suppressed, password PR55 = OFF



Safety switch $10V\leftrightarrow mA/Pt$ always in position left or right. Leaving the safety switch open may lead to faulty functions!

Caution! The unit contains ESD-sensitive components.

2 Electrical connections

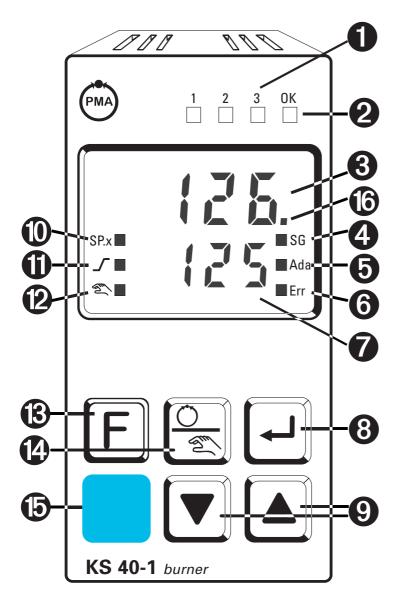
- * Safety switch INP1 (mA \leftrightarrow 10V) in position 10V
- ** Safety switch INP1 (mA \leftrightarrow 10V) in position mA/Pt

Connection of input INP1

Input for variable x1 (process value)

- a thermocouple
- **b** resistance thermometer (Pt100/ Pt1000/ KTY/ ...)
- c Transducer 50-30-50 Ω
- **d** voltage (0/2...10V)
- e pressure transmitter (3-wire connection)
- **f** pressure transmitter (2-wire connection)
- **g** current (0/4...20mA)

Connection of input INP2


See input INP1.

Connection of inputs di2/di3

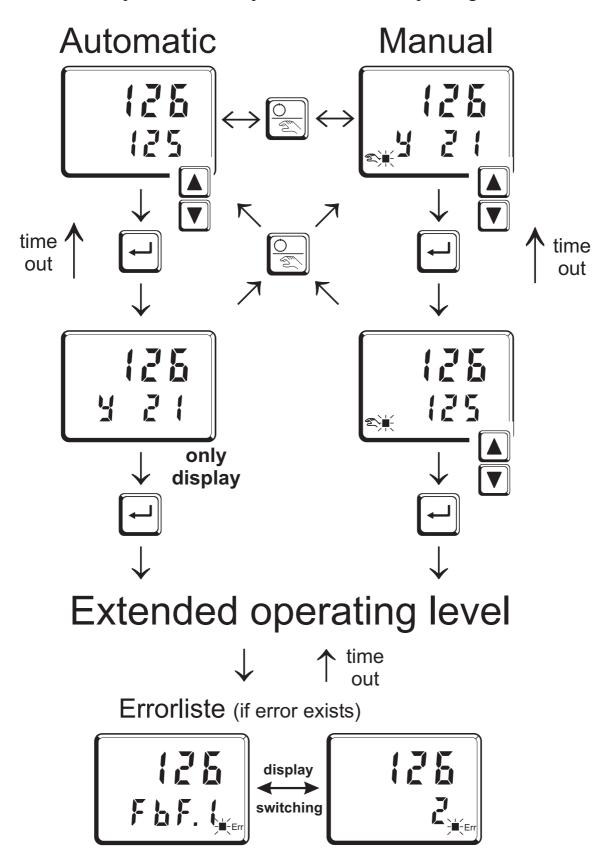
Digital input di2 for external switching between 5 P and 5 P.2 (SP/SP2). Digital input di3 for external switching between 3-point-stepping controller and on/off controller (DPS/SG).

3 Operation

3.1 Front view

- 1 Status of switching outputs [] L. I... 3
- **2** Lit with limit value 1 not exceeded
- **3** Process value display
- **4** Controller works as on/off controller
- **6** Self-tuning active
- **6** Entry in error list
- **7** Set-point, controller output
- 8 Enter key: calls up extended operating level / error list
- **9** Up/down keys: changing the set-point or the controller output value
- **1** Set-point **5 P.2** or **5 P.E** is effective
- **1** Set-point gradient effective
- Manual mode
- Function key
- Manual-automatic-mode switching (**2**)
- PC connection for BlueControl (engineering tool)
- Signalization

 PROR level (burns)


 Loof level (blinks)

In the upper display line, the process value is <u>always</u> displayed. At parameter, configuration, calibration as well as extended operating level, the bottom display line changes cyclically between parameter name and parameter value.

Front view 7 KS40-1 burner

3.2 Operating level

The content of the extended operating level is determined by means of BlueControl (engineering tool). Parameters which are used frequently or the display of which is important can be copied to the extended operating level.

KS40-1 burner 8 Operating level

Maintenance manager / Error list

With one or several errors, the extended operating level always starts with the error list. Signalling an actual entry in the error list (alarm, error) is done by the Err LED in the display. To reach the error list press \Box twice.

Err LED status	Signification	Proceed as follows
blinks	Alarm due to existing error	- Determine the error type in the error list via the error number
	_	- Remove the error
	Error removed,	- Acknowledge the alarm in the error list pressing key ▲ or ▼
	Alarm not acknowledged	- The alarm entry was deleted.
off	No error, all alarm entries deleted	,

Error list:

Name	Description	Cause	Possible remedial action
E. 1	Internal error, cannot be removed	- E.g. defective EEPROM	Contact PMA serviceReturn unit to our factory
E.2	Internal error, can be reset	- e.g. EMC trouble	 Keep measurement and power supply cables in separate runs Ensure that interference suppression of contactors is provided
F b F. 1	Sensor break INP1 / 2	Sensor defectiveFaulty cabling	- Replace INP1 / 2 sensor - Check INP1 / 2 connection
5ht.1 /2	Short circuit INP1 / 2	- Sensor defective - Faulty cabling	Replace INP1/2 sensorCheck INP1/2 connection
POL. (INP1 polarity error	- Faulty cabling	- Reverse INP1 polarity
Loop	Control loop alarm (LOOP)	Input signal defective or not connected correctlyOutput not connected correctly	 Check heating or cooling circuit Check sensor and replace it, if necessary Check controller and switching device
RARK	Self-tuning heating alarm (ADAH)	- See Self-tuning heating error status	- see Self-tuning heating error status
L (ň. 1/ 2/3	stored limit alarm 1/2/3	- adjusted limit value 1 / 2 / 3 exceeded	- check process
InF.1	time limit value message	- adjusted number of operating hours reached	- application-specific

Operating level 9 KS40-1 burner

Error status (error status 3 - 9 only with error RdRH / RdRL):

Error	status	Signification
	No error/message	not visible, except with acknowledgement
- {	Stored error	Change to error status 0 after acknowledgement in error list
2	Existing error	Change to error status 1 after error removal
3	Faulty control action	Re-configure controller (inverse \leftrightarrow direct)
Ч	No response of process variable	The control loop is perhaps not closed: check sensor, connections and process
5	Low reversal point	Increase (RdRH) max. output limiting YH or decrease (RdRL) min. output limiting YL o
δ	Danger of exceeded set-point (parameter determined)	If necessary, increase (inverse) or reduce (direct) set-point
	Output step change too small (dy > 5%)	Increase (RdRH) max. output limiting Y.H or reduce (RdRL) min. output limiting Y.L o
8	Set-point reserve too small	Increase set-point (invers), reduce set-point (direct) or increase set-point range (\rightarrow PRrR/5EEP/5P.LU and 5P.H .
9	Impulse tuning failed	The control loop is perhaps not closed: check sensor, connections and process

3.3 Self-tuning

After starting by the operator, the controller makes a self-tuning attempt. The controller uses the process characteristics for quick line-out to the set-point without overshoot.

 \mathbf{k} and \mathbf{k} are taken into account only, if they were not set to \mathbf{l} \mathbf{f} \mathbf{f} previously.

Self-tuning start

The operator can start self-tuning at any time. For this, keys \square and \blacktriangle must be pressed simultaneously. The AdA LED starts blinking.

The controller outputs 0% or $4.1 \, o$, waits until the process is at rest and starts self-tuning (AdA LED lit permanently).

The self-tuning attempt is started when the following prerequisite is met:

• The difference between process value ↔ set-point must be ≥ 10% of the set-point range (5 P.H · - 5 P.L II) (with inverse action: process value smaller than set-point, with direct action: process value higher than set-point).

After successful self-tuning, the AdA-LED is off and the controller continues operating with the new control parameters.

Self-tuning cancellation by the operator:

Self-tuning can always be cancelled by the operator. For this, press \square and \blacktriangle key simultaneously. The controller continues operating with the old parameters in automatic mode in the first case and in manual mode in the second case.

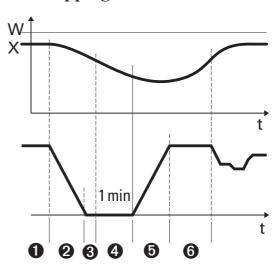
KS40-1 burner 10 Self-tuning

Self-tuning cancellation by the controller:

If the Err LED starts blinking while self-tuning is running, successful self-tuning is prevented due to the control conditions. In this case, self-tuning was cancelled by the controller. The controller switches off its outputs (controller output 0%).

Acknowledgement procedures in case of unsuccessful self-tuning:

- 1. Press keys and simultaneously:

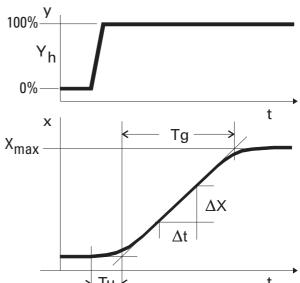

 The controller continues controlling using the old parameters in automatic mode. The Err LED continues blinking, until the self-tuning error was acknowledged in the error list.
- 2. Press key : :
 Display of error list at extended operating level. After acknowledgement of the error message, the controller continues control in automatic mode using the old parameters.

Cancellation causes:

 \rightarrow page 9: "Error status self-tuning heating (RdRK) and cooling (RdRL)"

Examples for self-tuning attempt 3-point-stepping controller

After the start (1) the controller closes the actuator (2 [] L.]. When the difference between process value and set-point is big enough (3), the changing of the process value is monitored for 1 min. (4). Afterwards the actuator is opened (5 [] L.!). If the reversal point is reached (6) or there are made enough measurements, the parameters are detected and are adopted.


3.4 Manual tuning

The optimization aid should be used with units on which the control parameters shall be set without self-tuning.

For this, the response of process variable x after a step change of correcting variable y can be used. Frequently, plotting the complete response curve (0 to 100%) is not possible, because the process must be kept within defined limits.

Manual tuning 11 KS40-1 burner

Values T_g and x_{max} (step change from 0 to 100 %) or Δt and Δx (partial step response) can be used to determine the maximum rate of increase v_{max} .

$$y$$
 =correcting variable Y_h = control range Tu = delay time (s) Tg = recovery time (s) X_{max} = maximum process value

$$V_{\text{max}} = \frac{Xmax}{Tg} = \frac{\Delta x}{\Delta t} \triangleq \text{max. rate of increase of process value}$$

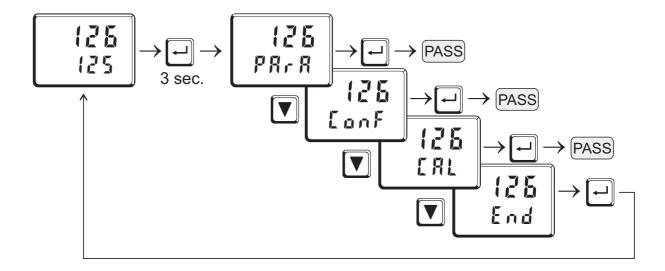
The control parameters can be determined from the values calculated for delay time T_u , maximum rate of increase v_{max} , control range X_h and characteristic K according to the **formulas** given below. Increase Xp, if line-out to the set-point oscillates.

Parameter adjustment effects

-	1 diditieter dajtistittetti ejjeets					
Parameter		neter	Control	Line-out of disturbances	Start-up behaviour	
Pb! higher		higher	increased damping	slower line-out	slower reduction of duty cycle	
	lower Ld higher lower		reduced damping	faster line-out	faster reduction of duty cycle	
Ł			reduced damping	faster response to disturbances	faster reduction of duty cycle	
L			increased damping	slower response to disturbances	slower reduction of duty cycle	
Ł			increased damping	slower line-out	slower reduction of duty cycle	
L		lower	reduced damping	faster line-out	faster reduction of duty cycle	

K	=	Vmax	*	Tu
17	_	у шал		1 u

With 2-point and 3-point controllers, the cycle time must be adjusted to


 $k / k \leq 0.25 * Tu$

Formulas

1 0111100000			
controller behavior	Pb { [phy. units]	Łd [s]	£ , [s]
PID	1,7 * K	2 * Tu	2 * Tu
PD	0,5 * K	Tu	OFF
PI	2,6 * K	OFF	6 * Tu
P	K	OFF	OFF
3-point-stepping	1,7 * K	Tu	2 * Tu

3.5 Operating structure

After supply voltage switch-on, the controller starts with the **operating levels**. The controller status is as before power off.

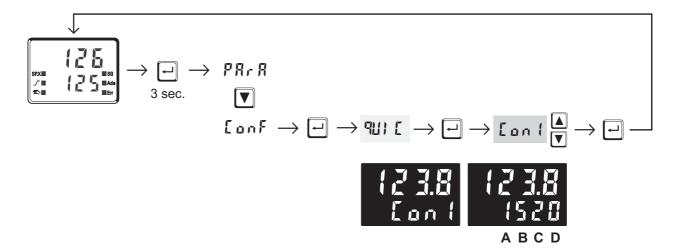
PRr R - level: At PRr R - level, the right decimal point of the

upper display line is lit continuously.

At Lanf - level: At Lanf - level, the right decimal point of upper

display line blinks

All levels are accessible only by entering the Password (PR55). If the safety switch **Loc** is open all levels are disabled


To get access to the configuration and the parameters the saftey switch Loc must be closed (factory setting).

Safety switch Loc	Password entered with BluePort®	Function disabled or enabled with BluePort®	Access via the instrument front panel:
closed	OFF / password	disabled / enabled	enabled
open	OFF / password	disabled	disabled
open	OFF	enabled	enabled
open	Password	enabled	enabled after password entry

4 Configuration level

4.1 Configuration with All [

At configuration level, the controller function is determined by changing configuration word <code>[on!.[on!</code> and the code adjusted for <code>[on!</code> are displayed alternately on the lower display line.

Code signification:

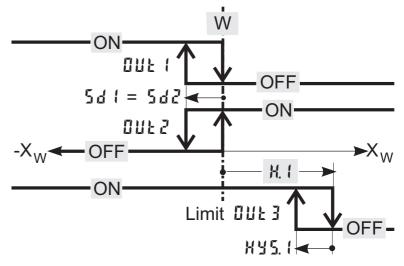
A	A Reaction at sensor break as process value higher than set-point.				
	1	Reaction at sensor break as process value smaller than set-point			
	2	Only P30/W connection, always process value smaller than set-point *			
В	8	Potentiometric transducer 50-30-50 Ω / pressure sensor 010V, display range 0,0100,0 (%)			
	1	Potentiometric transducer 50-30-50 Ω / pressure sensor 010V, display range 0,001,00 (bar)			
	2	Potentiometric transducer 50-30-50 Ω / pressure sensor 010V, display range 0,016,0 (bar)			
	3	Potentiometric transducer 50-30-50 Ω / pressure sensor 010V, display range 0,040,0 (bar)			
	ч	Resistance thermometer Pt 100Ω , range $0200^{\circ}\mathrm{C}$			
	S Resistance thermometer Pt 100 Ω, range 0400°C				
	5	Thermocouple type L, range 0900°C			
	7	Thermocouple type K, range 01350°C			
C	0	Signaller with switching			
	1	3-point signaller			
	2	3-point stepping controller (DPS) switchable to signaller (SG)			
	3	3-point stepping controller (DPS) switchable to 3-point signaller (SG)			
D	0	Not changeable			
* On	* Only possible with $A = 2$ and $B = 2 \dots 3$				

After exit from the configuration level (see page 43, the controller is re-initialized (all display elements are lit) and changes over to normal operation (operating level).

Leading zeros are not displayed (ex.: display 400 with code "Y" !! !! |

Configuration example 1 (code 0400):

KS40-1 as a signaller with switch-over contact for 2-stage burner: Measuring range 0...200°C, Resistance thermometer Pt 100, Reaction at sensor break as process value higher than set-point.


Configuration example 2 (code 2120):

KS40-1 as 3-point stepping controller: Connection to pressure transmitter P30/W, Measuring range 0,00...1,00 bar, Reaction at sensor break as process value smaller than set-point.

Function: Signaller with switch-over contact

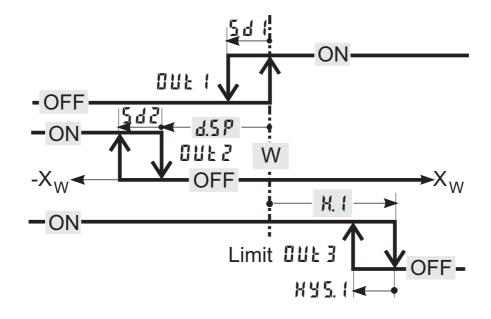
CAUTION: The two relays 1 and 2 are coupled, i.e. the contacts have switch-over function. Ensure that the two relays are not energized or de-energized simultaneously. Exception: de-energized condition.

Settings:

Switching differences: 5d 1: in physical values

Limit value **III**: The relay is de-energized when exceeding the limit.

Upper limit value H. I: in units of phys. quantity. Switching difference HY5. I: in units of phys.quantity


Signalling LEDs: LED1: lit when UUE I is energized

LED2: lit when **QUE2** is energized LED3: lit when **QUE3** is energized

OK-LED: lit, unless the limit value is reached

Parameter: see chapter 5 "Parameter level"

Function: 3-point signaller

Settings:

Switch-on point is coupled with the set-point.

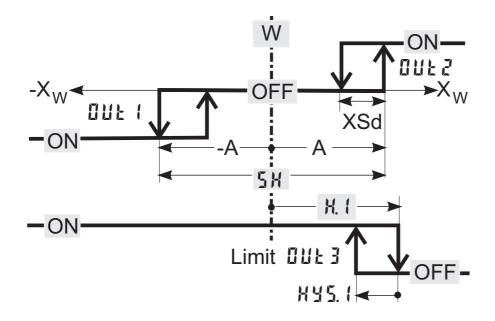
Switching difference 5d 1: in units of phys. quantity.

Switch-off point is always below the set-point!

Adjustment range d.5P: in units of phys. quantity Switching difference 5d2: in units of phys. quantity.

Limit value **UUL 3**: With the limit value exceeded, the relay is de-energized.

High limit value H. I: in units of phys. quantity.


Switching difference **XY5**. I: in units of phys.quantity.

Signal LEDs: LED1: lit, when **UUL** is energized

LED2: lit, when III is energized OK LED: lit, when limit value not reached

Parameters: see chapter 5 "Parameter level"

Function: 3-point stepping controller

Settings:

Controller: 5X: in units of phys. quantity

Response threshold A: 0,5 • 5 %

Switching difference XSd: 0,06 • 5H + 0,08

Actuator travel time **£** £: 3...9999 s Min.duty cycle: fixed, TEmin = 100 ms

Control parameters: Pb = 0.01...9999: in unit of phys. quantity °C or °F

(number of digits behind the decimal point is determined

by [[[]]]

 $k_1 = 1...9999 \text{ s}$ (UFF = no I-action) $k_2 = 1...9999 \text{ s}$ (UFF = no D-action)

Limit value **UUŁ 3**: With exceeded limit value, the relay is de-energized.

High limit value H. ! : in units of phys. quantity

Switching difference #\forall 5.1 : in units of phys. quantity

Signalling LEDs: LED1: lit when **UUL** is energized

LED2: lit when **UUŁ** 2 · 5 energized OK LED: lit, unless limit value is reached

De-energized condition: all relays de-energized, contacts open

Parameters: see chapter 5 "Parameter level"

4.2 Configuration without 911 [(911 [= 0 F F)

When key \Box is kept pressed during controller supply voltage switch-on, the configuration is switched off with \Box \Box .

Now, all configuration settings are available to the user.

For changing back to configuration with $\P U \subseteq \Gamma$, the two keys $\P \Gamma$ must be kept pressed during controller supply voltage switch-on.

Hereby, the controller is reset to the factory-set default values!

4.3 Configuration survey:

[on (

Name	Value range	Description		Own setting
	00002330	GUIL - Configuration	0000	

Wire hook switches (on electronic card)

Name	Value range	Description	Default	Own setting
Loc	open or closed	Wire hook switch for locking the Loof - and PRcR - level (if enabled with BlueControl)	closed	
InP.1	mA/Pt or 10V	Wire hook switch for chosing InP.1 signal type	mA/Pt	

Entr

Name	Value range	Description	Default	Own setting
SP.Fn		Basic configuration of setpoint processing	0	
	0	set-point controller can be switched over to external set-point (-> LULI / 5 P.E)		
	1	programmer		
	8	standard controller with external offset (5 P.E)		
E.Fnc		Control behavior (algorithm)	0	
	0	2-point signaller		
	1	PID controller (2-point and continuous)		
	2	Δ/ Y/Off, or 2-point controller with partial/full load switch-over		
	3	2 x PID (3-point and continuous)		
	4	3-point stepping controller		
	7	3-point signaller		
	8	3-point stepping controller switchable to signaller		
	9	3-point stepping controller switchable to 3-point signaller		
ňÄn		Manual operating permitted	1	
	0	no		
	1	yes (see also L D D I / A R n)		
E.Rc E		Method of controller operation	0	
	0	Inverse, e.g. heating		
	1	Direct, e.g. cooling		

Name	Value range	Description		Own setting
FRI L		Behavior at sensor break	1	
	0	Controller outputs switched of		
	1	y = Y2		
	2	$y = mean$ output. The maximum permissible output can be adjusted with parameter $Y \wedge Y$. To prevent determination of inadmissible values, mean value formation is only if the control deviation is lower than parameter $Y \wedge Y $		
rn G.L	-19999999	X0 (low limit range of control)	0	
r n [5.X	-19999999	X100 (high limit range of control)	100	

1 r n LL and r n LH indicate the control range to which e.g. self-tuning is related.

1 n P. 1

Name	Value range	Description	Default	Own setting
5.5 47		Sensor type selection	50	
	0	Thermocouple type L (-100900°C), Fe-CuNi DIN		
	1	Thermocouple type J (-1001200°C), Fe-CuNi		
	2	Thermocouple type K (-1001350°C), NiCr-Ni		
	3	Thermocouple type N (-1001300°C), Nicrosil-Nisil		
	4	Thermocouple type S (01760°C), PtRh-Pt10%		
	5	Thermocouple type R (01760°C), PtRh-Pt13%		
	20	Pt100 (-200,0 100,0 °C)		
	21	Pt100 (-200,0 850,0 °C)		
	22	Pt1000 (-200,0200,0 °C)		
	23	KTY 11-6 (special 04500 Ohm)		
	30	020mA / 420mA 2		
	40	010V / 210V 2		
	50	Potentiometer 0160 Ohm 2		
	51	Potentiometer 0450 Ohm 2		
	52	Potentiometer 01600 Ohm 2		
5.L in		Linearization (only at 5.5 $\frac{1}{2}P = 30 (020 \text{mA})$ and 40 (010V) adjustable)	0	
	0	None		
	1	Linearization to specification. Creation of linearization table		
		Linearization to specification. Creation of linearization table with BlueControl (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.		
Lorr	Measured value correction (scaling		2	
	0	Without scaling		
	1	Offset correction (at ERL level)		
	2	2- point correction (at ERL level)		
	3	Scaling (at PRr R level)		

2 With current, voltage or potentiometer input signals, scaling is required (see section 5.1).

1 nP.2

Name	Value range	Description	Default	Own setting
1.Fnc		Function selection of INP2	0	
	0	No function		
	2	External set-point 5P.E (switching -> L GGI / 5P.E)		
5.E Y P		Sensor type selection	30	
	20	Pt100 (-200,0 100,0 °C)		
	21	Pt100 (-200,0 850,0 °C)		
	22	Pt1000 (-200,0200,0 °C)		
	30	020mA / 420mA		
	50	Potentiometer (0160 Ohm)		
	51	Potentiometer (0450 Ohm)		
	52	Potentiometer (01600 Ohm)		
Corr		Measured value correction / scaling	0	
	0	Without scaling		
	1	Offset correction (at [RL level)		
	2	2-point correction (at LRL level)		
	3	Scaling (at PR R level)		

1 With current or potentiometer input signals, scaling is required (see section 5.1).

1 15

Name	Value range	Description	Default	Own setting
Fnc. 1		Function of limit 1/2/3	1/0/0	
Fnc.2	0	Switched off		
Fnc.3	1	Measured value monitoring		
	2	Measured value monitoring + alarm status storage. A stored limit value can be reset via error list, \end{a}-key or a digital input (-> LULI / Err.r)		
Src. 1		Source of limit 1/2/3	1/0/0	
5, c.2	0	Process value = absolut alarm		
5 r c.3	1	Control deviation Xw (process value - set-point) relativ alarm		
	2	Control deviation Xw (relativ alarm) with suppression after start-up and set-point change		
	6	Effective set-point Weff		
	7	Correcting variable (controller output)		
LPRL		Monitoring of control loop interruption	0	
	0	Switched off		
	1	LOOP alarm active		

Out.1/2/3

Name	Value range	Description	Default	Own setting
0.Rc Ł		Method of operation of output OUT1	ըսէ.լ։ 0	
	0	Direct / normally open	0ut.2: 0 0ut.3: 1	
	1	Inverse / normaly closed	uuc.3: 1	
4. (Controller output Y1 / Y2	Dut. j: 1/0	
4.2	0	Not active	0ut.2: 0/1	
	1	Active	DDE.3: 0/0	
Lint		Limit 1/2/3 signal	Dut.1: 0/0/0	
1 15.2	0	Not active	0ut.2: 0/0/0 0ut.3: 1/0/0	
1.63	1	Active		
I P.A.L		Interruption alarm signal (LOOP)	[] u Ł. [: 0	
	0	Not active	□uŁ.2: 0 □uŁ.3: 0	
	1	Active	<u> </u>	
FR . (INP1 / INP2 error signal	<u> [] u Ł.]</u> : 0/0	
FR .2	0	Not active	0 L.Z: 0/0	
	1	Active	<u> </u>	

1001

Name	Value range	Description	Default	Own setting
1		Local / Remote switching (Remote: adjusting of all values by front keys is blocked)	0	
	0	No function		
	1	Always active		
	3	DI2 switches *		
	4	DI3 switches *		
	5	F key switches *		
5 <i>P.</i> 2		Switching to second set-point SP.2	3	
	0	No function		
	3	DI2 switches *		
	4	DI3 switches *		
	5	F key switches *		
5 P.E		Switching to external set-point SP.E	0	
	0	No function		
	1	Always active		
	3	DI2 switches *		
	4	DI3 switches *		
	5	F key switches *		
72		Y/Y2 switching	0	
	0	No function		
	3	DI2 switches *		
	4	DI3 switches *		
	5	F key switches *		
	6	🕞 key switches *		

Name	Value range	Description	Default	Own setting
ňÄn		Automatic/manual switching	6	
	0	No function		
	1	Always active		
	3	DI2 switches *		
	4	DI3 switches *		
	5	F key switches *		
	6	🖳 key switches *		
E.oFF		Switch of the controller	0	
	0	No function		
	3	DI2 switches *		
	4	DI3 switches *		
	5	F key switches *		
	6	😭 key switches *		
ň.L o c		Blocage of the 🕞 key	0	
	0	No function		
	3	DI2 switches *		
	4	DI3 switches *		
<u> </u>	5	F key switches *		
Err.r		Reset of all error list entries	0	
	0	No function		
	3	DI2 switches *		
	4	DI3 switches *		
	5	F key switches *		
	6	😭 key switches *		
5.5		Switching of the controller behavior between 3-point-stepping controller and signaller	4	
	0	No function		
	3	DI2 switches *		
	4	DI3 switches *		
	5	F key switches *		
P.run		Programmer Run/Stop	5	
	0	No function		
	3	DI2 switches *		
	4	DI3 switches *		
	5	F key switches *		
d iFn		Function of digital inputs (valid for all inputs)	0	
	0	Direct		
	1	Inverse		
	2	Toggle key function		

^{*} Multiple switching is possible and should be excluded on demand.

othr

Name	Value range	Description		Own setting
Unit		Unit	1	
	0	Without unit		
	1	°C		
	2	°F		
45		Decimal point (max. number of digits behind the decimal point)	0	
	0	No digit behind decimal point		
	1	1 digit behind decimal point		
	2	2 digits behind decimal point		
	3	3 digits behind decimal point		
E.dEL	0200	Modem delay [ms]	0	

5 Parameter setting level

Entr

Visible with 9111 [Name	Value range	Description	Default	Own setting
×	Pb (19999	Proportional band 1 (heating) in phys. dimensions (e.g. °C)	10	
	P62	19999	Proportional band 2 (cooling) in phys. dimensions (e.g. °C)	10	
×	1 1	19999	Integral action time 1 (heating) [s]	10	
	1 12	19999	Integral action time 2 (cooling) [s]	10	
X	201	19999	Derivative action time 1 (heating) [s]	10	
	645	19999	Derivative action time 2 (cooling) [s]	10	
	Ŀſ	0,49999	Minimal cycle duration 1 (heating) [s]. The minimum impulse is 1/4 x t1	10	
	12	0,49999	Minimal cycle duration 2 (heating) [s]. The minimum impulse is 1/4 x t2	10	
X	5 X	09999	Dead zone or switching differential for on-off control [phys. dimensions)	1	
X	541	0,09999	Switching differntial relais 1 for signaller with partial/full load switch-over	0,1	
X	562	0,09999	Switching differntial relais 2 for 3-point signaller	0,1	
X	d.5 P	-1999999 9	Trigger point speration for series contact Δ / Y / Off [phys. dimensions]	0	
X	ŁP	0,19999	Minimum impulse [s]	OFF	
X	ŁŁ	39999	Actuator response time for servo-motor [s]	60	
	Y.L o	-120120	Lower output limit [%]	0	
	3.K .	-120120	Upper output limit [%]	100	
	75	-120120	2. correcting variable	0	
	¥.0	-120120	Working point for the correcting variable [%]	0	
	AYK	-120120	Limitation of the mean value Ym [%]	5	
	L.Yň	09999	Max. deviation xw at the start of mean value calculation [phys. dimensions]	8	

SELP

Visible with 9111 [Name	Value range	Description	Default	Own setting
	5 P.L 0	-19999999	Set-point limit low for Weff	0	
	5 P.X .		Set-point limit high for Weff	100	
X	5 <i>P.</i> 2	-19999999	Set-point 2.	20	
	r.5P	09999	Set-point gradient [/min]	OFF	

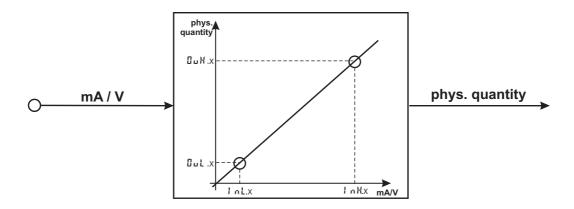
ProD

Visible with 941 [Name	Value range	Description	Default	Own setting
	5 P.O (-19999999	Segment end set-point 1	100	
	PŁO (09999	Segment time 1 [min]	10	
	5 P.O Z	-19999999	Segment end set-point 2	100	
	PE.02	09999	Segment time 2 [min]	10	
	5 P.O 3	-19999999	Segment end set-point 3	200	
	PŁ.03	09999	Segment time 3 [min]	10	
	5 P.O Y	-19999999	Segment end set-point 4	200	
	P Ł. 🛚 Y	09999	Segment time 4 [min]	10	

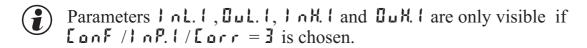
1 nP. 1

Visible with ¶U [Name	Value range	Description	Default	Own setting
	InL.	-19999999	Input value for the lower scaling point	38,5	
	Dul. I	-19999999	Displayed value for the lower scaling point	0	
	l nX.	-19999999	Input value for the upper scaling point	61,5	
	□uX.1		Displayed value for the lower scaling point	100	
	Ł.F (-19999999	Filter time constant [s]	0,5	

1 nP.2


Visible with 9111 [Name	Value range	Description	Default	Own setting
	1 n L.2	-19999999	Input value for the lower scaling point	0	
		-19999999	Displayed value for the lower scaling point	0	
	1 0 8.2	-19999999	Input value for the upper scaling point	100	
	0 u K.2	-19999999	Displayed value for the upper scaling point	100	

1 15


Visible with ¶U1 [Name	Value range	Description	Default	Own setting
		-19999999	Lower limit 1	OFF	
X	X. (-19999999	Upper limit 1	20	
X	X	09999	Hysteresis limit 1	0,1	
	1.2/3	-19999999	Lower limit 2 / 3	OFF	
	E/ 5.X	-19999999	Upper limit 2 / 3	OFF	
	XY5.2/	09999	Hysteresis limit 2 / 3	0,1	
	3				

5.1 Input scaling (only visible with $\P \sqcup \Gamma = \square F F$)

When using current or voltage signals as input variables for 1 nP.1 or 1 nP.2, scaling of input and display values at parameter setting level is required. Specification of the input value for lower and higher scaling point is in the relevant electrical unit (mA/V).

5.1.1 Input | nP. (

5.E Y P	Input signal	InL.I	Out. I	Lakt	0 u X. (
30	0 20 mA	0	any	20	any
(020mA)	4 20 mA	4	any	20	any
40 (010V)	0 10 V	0	any	10	any
	2 10 V	2	any	10	any

In addition to these settings, InL. I and InH. I can be adjusted in the range (0...20mA / 0...10V) determined by selection of 5.£ 47.

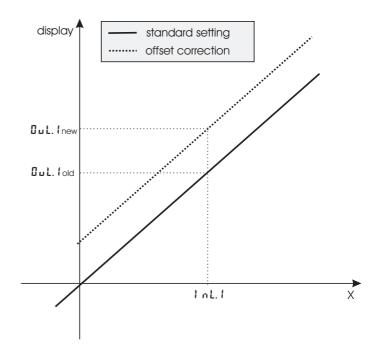
For using the predetermined scaling with thermocouple and resistance thermometer (Pt100), the settings for InL. I and IuL. I and for InK. I and IuK. I must have the same value.

Input scaling changes at calibration level (\rightarrow page 27) are displayed by input scaling at parameter setting level. After calibration reset ($\square FF$), the scaling parameters are reset to default.

5.1.2 Input | nP.2

As input $I \cap P$. I, but only 5.5 YP = 30 adjustable!

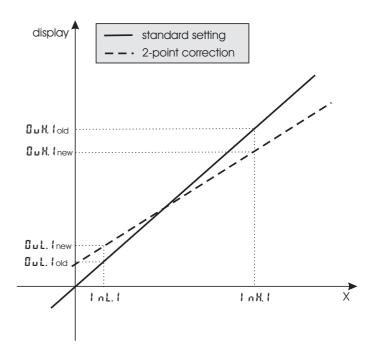
6 Calibration level

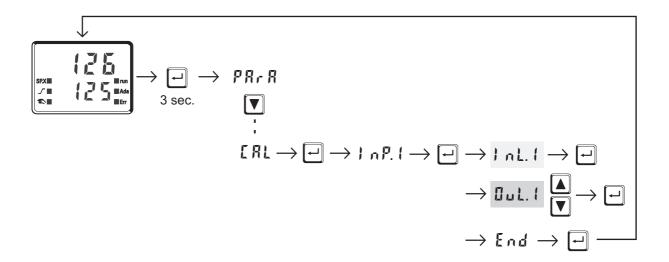

Measured value correction ([FRL]) is only visible if [FanF]/[aP]. I / [Farr] or [FanF]/[aP] is chosen.

The measured value can be matched in the calibration menu (\mathbf{LRL}). Two methods are available:

Offset correction

([anF/InP.I/[arr=1):

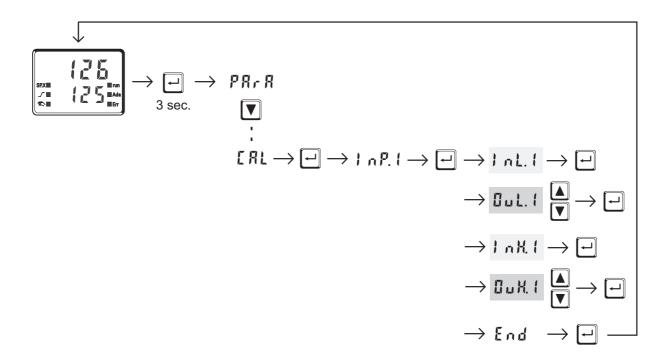

• possible on-line at the process


2-point correction ([onf/|nP.1/[orr = 2]):

,

• is possible off-line with process value simulator

Offset correction ([anF/]nP.1/[arr = 1):



- Before calibration, Bul. I is equal to Inl. I.

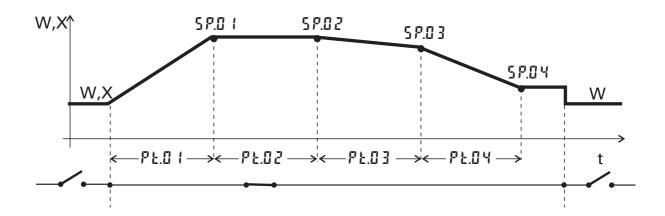
 The operator can correct the display value by pressing keys

 Subsequently, he confirms the display value by pressing key ...

2-point correction ([onF/InP.1/[orr = 1):

- In L. I: The input value of the lower scaling point is displayed.

 The operator must adjust the lower input value by means of a process value simulator and confirm the input value by pressing key
- ☐ L.!: The display value of the lower scaling point is displayed.


 Before calibration, ☐ L.! equals ! nL.!.

 The operator can correct the lower display value by pressing the keys. Subsequently, he confirms the display value by pressing key —.
- The input value of the upper scaling point is displayed. .

 The operator must adjust the upper input value by means of the process value simulator and confirm the input value by pressing key ...
- Before calibration Bull. I equals In H. I.

 The operator can correct the upper display value by pressing keys Subsequently, he confirms the display value by pressing key ...
- The parameters ([]uL.1, []uH.1) changed at [RL] level can be reset by adjusting the parameters below the lowest adjustment value ([]FF) by means of decrement key [v].

7 Programmer

Programmer set-up:

For using the controller as a programmer, select parameter 5P.Fn = 1 in the LanF menu. The programmer is started via one of digital inputs di2...3 or the F key. Which input shall be used for starting the programmer is determined by selecting parameter P.run = 3/4/5 in the LanF menu accordingly. For assigning the program end as a digital signal to one of the relay outputs, parameter P.End = 1 must be selected for the relevant output DUE.1...DUE.3 in the LanF menu.

Programmer parameter setting:

A programmer with 4 segments is available to the user. Determine a segment duration PŁ.II | ... PŁ.II | (in minutes) and a segment target set-point 5P.II | ... 5P.II | menu.

Starting/stopping the programmer:

Starting the programmer is done by a digital signal at input di2..3 or by pressing the \mathbb{F} key selected by parameter P.r un.

The programmer calculates a gradient from segment end setpoint and segment time. This gradient is always valid. Normaly, the programmer starts the first segment at process value. Because of this the effective run-time of the first segment may differ from the at PRrR level setted segment time (process value \neq setpoint).

After program end, the controller continues controlling with the target set-point set last.

If the program is stopped during execution (signal at digital input di2..3 or the F key is taken away), the programmer returns to program start and waits for a new start signal.

Program parameter changing while the program is running is possible.

Changing the segment time:

Changing the segment time leads to re-calculation of the required gradient. When the segment time has already elapsed, starting with the new segment is done directly, where the set-point changes with a step.

Changing the segment end setpoint:

Changing the set-point leads to re-calculation of the required gradient, in order to reach the new set-point during the segment rest time, whereby the required gradient polarity sign can change.

INPUTS

PROCESS VALUE INPUT INP1

Resolution: > 14 bits

Decimal point: 0 to 3 digits behind the

decimal point

Dig. input filter: adjustable 0,000...9999 s

Scanning cycle: 100 ms

Measured value 2-point or offset correction

correction:

Thermocouples

 \rightarrow Table 2 (page 58)

 $\begin{array}{ll} \text{Input resistance:} & \geq 1 \text{ M}\Omega \\ \text{Effect of source resistance:} & 1 \mu\text{V}/\Omega \end{array}$

Cold-junction compensation

Maximal additional error: \pm 0,5 K

Sensor break monitoring

Sensor current: $\leq 1 \,\mu\text{A}$

Configurable output action

Resistance thermometer

 \rightarrow Table 2 (page 58)

Connection: 2 or 3-wire Lead resistance: max. 30 Ohm

Input circuit monitor: break and short circuit

Potentiometric transducer 50-30-50 Ω

Current and voltage signals

 \rightarrow Table 3 (page 58)

Span start, end of span: anywhere within measuring

range

Scaling: selectable -1999...9999
Linearization: 16 segments, adaptable

with BlueControl

Decimal point: adjustable

Input circuit monitor: 12,5% below span start

(2mA, 1V)

SUPPLEMENTARY INPUT INP2

Resolution: > 14 bits Scanning cycle: 100 ms Accuracy: < 0,5 %

Current measuring range

Technical data as for INP1

Potentiometer

 \rightarrow Table 2 (page 58)

Connection: 3-wire Lead resistance: max. 30 Ohm

Input circuit monitor: break

CONTROL INPUT DI2/DI3

Configurable as switch or push-button! Connection of a potential-free contact suitable for switching "dry" circuits.

Switched voltage: 5 V Current: $160 \mu\text{A}$

TRANSMITTER SUPPLY UT (OPTION)

Power: $22 \text{ mA} / \ge 18 \text{ V}$

GALVANIC ISOLATION

Safety isolation
Function isolation

Power supply Process value in

Power supply connections

Process value input INP1
Supplementary input INP2
Digital inputs di2 3

Digital inputs di2, 3 Transmitter supply U_T

Relay outputs OUT 1,2
Relay output OUT3

OUTPUTS

RELAY OUTPUTS OUT1, OUT2

Contact type: 2 NO contacts with

common connection

Max. contact rating: 500 VA, 250 V, 2A at

48...62 Hz,

resistive load

Min. contact rating: 6V, 1 mA DC

Operating life (electr.): 800.000 duty cycles with

max. rating

RELAY OUTPUT OUT3

Contact type: potential-free changeover

contact

Max.contact rating: 500 VA, 250 V, 2A at 48...62

Hz,

resistive load

Min. contact rating: 5V, 10 mA AC/DC

Operating life (electr.): 600.000 duty cycles with

max. contact rating

Note:

If the relays OUT1...OUT3 operate external contactors, these must be fitted with RC snubber circuits to manufacturer specifications to prevent excessive switch-off voltage peaks.

POWER SUPPLY

AC SUPPLY

Voltage: 90...250 V AC Frequency: 48...62 Hz Power consumption approx. 7,3 VA

BEHAVIOUR WITH POWER FAILURE

Configuration, parameters and adjusted set-points, control mode:

Non-volatile storage in EEPROM

ENVIRONMENTAL CONDITIONS

Protection modes

Front panel: IP 65 (NEMA 4X)

Housing: IP 20 Terminals: IP 00

Permissible temperatures

For specified 0...60°C

accuracy:

Warm-up time: \geq 15 minutes For operation: -20...65°C For storage: -40...70°C

Humidity

75% yearly average, no condensation

Altitude

To 2000 m above sea level

Shock and vibration

Vibration test Fc (DIN 68-2-6)

Frequency: 10...150 Hz
Unit in operation: 1g or 0,075 mm
Unit not in operation: 2g or 0,15 mm

Shock test Ea (DIN IEC 68-2-27)

Shock: 15g Duration: 11ms

Electromagnetic compatibility

Complies with EN 61 326-1 (for continuous, non-attended operation)

GENERAL

Housing

Material: Makrolon 9415

flame-retardant

Flammability class: UL 94 VO, self-extinguishing

Plug-in module, inserted from the front

Safety test

Complies with EN 61010-1 (VDE 0411-1):

Overvoltage category II

Contamination class 2

Working voltage range 300 V

Protection class II

Certifications

Type tested to EN 14597 (replaces DIN 3440)

With certified sensors applicable for:

- Heat generating plants with outflow temperatures up to 120°C to DIN 4751
- Hot-water plants with outflow temperatures above 110°C to DIN 4752
- Thermal transfer plants with organic transfer media to DIN 4754
- Oil-heated plants to DIN 4755

cULus-certification

(Type 1, indoor use)

File: E 208286

Electrical connections

Flat-pin connectors 1 x 6,3 mm or 2 x 2,8 mm to DIN 46 244

Mounting

Panel mounting with two fixing clamps at top/bottom or right/left, High-density mounting possible

Mounting position: uncritical Weight: 0,27kg

Accessories delivered with the unit

Operating manual Fixing clamps

Table 1 Thermocouples measuring ranges

Type		Range		Accuracy	Resolution (Ø)
L	Fe-CuNi (DIN)	-100900°C	-1481652°F	≤ 2K	0,1 K
J	Fe-CuNi	-1001200°C	-1482192°F	≤ 2K	0,1 K
K	NiCr-Ni	-1001350°C	-1482462°F	≤ 2K	0,2 K
N	Nicrosil/Nisil	-1001300°C	-1482372°F	≤ 2K	0,2 K
S	PtRh-Pt 10%	01760°C	323200°F	≤ 2K	0,2 K
R	PtRh-Pt 13%	01760°C	323200°F	≤ 2K	0,2 K
T	Cu-CuNi	-200400°C	-328752°F	≤ 2K	0,05 K
C	W5%Re-W26%Re	02315°C	324199°F	≤ 2K	0,4 K
D	W3%Re-W25%Re	02315°C	324199°F	≤ 2K	0,4 K
Е	NiCr-CuNi	-1001000°C	-1481832°F	≤ 2K	0,1 K
B *	PtRh-Pt6%	0(100)1820°C	32(212)3308°F	≤ 2K	0,3 K

^{*} Specifications valid for 100°C

Table 2 Resistance transducer measuring ranges

Type	Sensor current	Range		Accuracy	Resolution (\emptyset)
Pt100		-200100°C	-140212°F	≤ 1K	0,1K
Pt100		-200850°C	-1401562°F	≤ 1K	0,1K
Pt1000		-200200°C	-140392°F	≤ 2K	0,1K
KTY 11-6*	0.2 m 4	-50150°C	-58302°F	≤ 2K	0,05K
Spezial	0,2 mA	04500			
Spezial		0	450		
Poti		0160 0450		≤0,1%	0,01 %
Poti					
Poti		01	1600		

^{*} Or special

Table 3 Current and voltage measuring ranges

Range	Input resistance	Accuracy	Resolution (Ø)
0-10 Volt	$\approx 110 \mathrm{k}\Omega$	≤ 0,1 %	$\leq 0.6 \mathrm{mV}$
0-20 mA	49 Ω (voltage requirement ≤ 2,5 V)	≤ 0,1 %	≤ 1,5 µA

9 Safety hints

This unit was built and tested in compliance with VDE 0411-1 / EN 61010-1 and was delivered in safe condition.

The unit complies with European guideline 89/336/EWG (EMC) and is provided with CE marking.

The unit was tested before delivery and has passed the tests required by the test schedule. To maintain this condition and to ensure safe operation, the user must follow the hints and warnings given in this operating manual.

The unit is intended exclusively for use as a measurement and control instrument in technical installations.

Warning

If the unit is damaged to an extent that safe operation seems impossible, the unit must not be taken into operation.

ELECTRICAL CONNECTIONS

The electrical wiring must conform to local standards (e.g. VDE 0100). The input measurement and control leads must be kept separate from signal and power supply leads.

COMMISSIONING

Before instrument switch-on, check that the following information is taken into account:

- Ensure that the supply voltage corresponds to the specifications on the type label.
- All covers required for contact protection must be fitted.
- If the controller is connected with other units in the same signal loop, check that the equipment in the output circuit is not affected before switch-on. If necessary, suitable protective measures must be taken.
- The unit may be operated only in installed condition.
- Before and during operation, the temperature restrictions specified for controller operation must be met.

•

SHUT-DOWN

For taking the unit out of operation, disconnect it from all voltage sources and protect it against accidental operation.

If the controller is connected with other equipment in the same signal loop, check that other equipment in the output circuit is not affected before switch-off. If necessary, suitable protective measures must be taken.

MAINTENANCE, REPAIR AND MODIFICATION

The units do not need particular maintenance.

Warning

When opening the units, or when removing covers or components, live parts and terminals may be exposed.

Before starting this work, the unit must be disconnected completely.

After completing this work, re-shut the unit and re-fit all covers and components. Check if specifications on the type label must be changed and correct them, if necessary.

Caution

When opening the units, components which are sensitive to electrostatic discharge (ESD) can be exposed. The following work may be done only at workstations with suitable ESD protection.

Modification, maintenance and repair work may be done only by trained and authorized personnel. For this purpose, the PMA service should be contacted.

9.1 Resetting to factory setting

In case of faultyconfiguration, KS4x-1 can be reset to the default condition.

For this, the operator must keep the keys increment and decrement pressed during power-on.

Then, press key increment to select **YE 5**.

Confirm factory resetting with Enter and the copy procedure is started (display [1] P \(\frac{1}{2} \)).

Afterwards the device restarts.

In all other cases, no reset will occur (timeout abortion).

- If one of the operating levels was blocked and the safety lock is open, reset to factory setting is not possible.
- If a pass number was defined (via BlueControl®) and the safety lock is open, but no operating level was blocked, enter the correct pass number when prompted in 3. A wrong pass number aborts the reset action.
- The copy procedure ($\square \square \square$) can take some seconds. Now, the transmitter is in normal operation.

Index

0-9	M
2-point correction	Maintenance manager
C	Manual tuning
Calibration ([RL)	Mounting
Calibration level (ERL)27 - 29	0
Configuration with DUI E 14 - 17	Offset correction
Configuration without LUI [18	Output OUT1
Control inputs di1, di2, di3 Technical data	Technical data
Current signal measuring range 32	Technical data
D	P
Digital inputs di1, di2, di3	Programmer
Technical data	Changing segment end setpoint 31
	Changing segment time
E	Parameter setting
Error list	Set-up
Example 3-point signaller	Starting/Stopping
3-point stepping controller	Q
Signaller with switch-over contact 15	IIII C Codes
F	R
Front view	Resetting to factory setting
I	Resistance thermometer measuring range . 32
Input INP1	S
Parameters	Safety hints
Technical data	Safety switch
Input INP2	Safety test
Parameters	Self-tuning
Input scaling	Cancelation
L	Start
LED	
Ada - LED	T
Err - LED	Thermocouple measuring range 32
✓ - LED	V
run - LED	Voltage signal measuring range 32
SP.x - LED	

9499-040-66011